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P. Żenczykowski

Department of Theoretical Physics, Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland
(e-mail: zenczyko@solaris.ifj.edu.pl)

Received: 12 November 1997 / Revised version: 17 February 1998 / Published online: 9 April 1998

Abstract. We discuss the applicability of γ5-dependent field renormalization as a means of renormalizing
away the apparent violation of Hara’s theorem observed in the quark model. It is pointed out that a
result totally analogous to the violation of Hara’s theorem is predicted by the quark model also for neutral
baryons. For neutral baryons, however, such a result cannot be renormalized away. This proves that γ5-
dependent renormalization does not provide a proper way for a hadron-level understanding of the violation
of Hara’s theorem observed in the quark model.

Weak radiative hyperon decays (WRHD’s) have been a
challenge to our understanding for over 30 years. Despite
all the work done during these years, a satisfactory theo-
retical understanding of these processes is still lacking. For
a review of current theoretical and experimental situation
in the field see [1].

The puzzle posed by weak radiative hyperon decays
centers on the issue of Hara’s theorem [2] and its possible
violation. Hara’s theorem states that the parity-violating
amplitude of decay Σ+ → pγ should vanish in the limit of
SU(3) flavour symmetry. There are two results that seem
to indicate that Hara’s theorem is violated.

1. Since SU(3) symmetry is expected to be weakly broken
one expects small parity-violating Σ+ → pγ amplitude
(and, consequently, small decay asymmetry). Experi-
ment [3] shows, however, that the asymmetry is large:

α(Σ+ → pγ) = −0.72 ± 0.086 ± 0.045 (1)

Furthermore, existing hadron-level Hara’s-theorem-
satisfying models lead to a pattern of asymmetries of
three related WRHD’s (Λ → nγ,Ξ0 → Λγ, Ξ0 →
Σ0γ) that does not seem to be corroborated by exper-
iment.

2. On the theoretical side it was observed by Kamal and
Riazuddin [4] that Hara’s theorem is violated in the
quark model even in the case of exact SU(3)-symmetry.
There have been several proposals of how to under-
stand this quark model result [5–7]. All of them have
various deficiencies. At present there is no consensus
on how the result of Kamal and Riazuddin should be
understood. The purpose of this note is to discuss the
most recent proposal [8] in that matter.

In [8] it has been argued that the apparent violation of
Hara’s theorem obtained in the quark model can be renor-

malized away at hadronic level by means of field renor-
malization with γ5-dependent renormalization constants.
Here we show that such a renormalization procedure, al-
though applicable to fundamental charged fermions, can-
not be successfully used for neutral baryons. Since quark
model predicts violation of a theorem analogous to that
of Hara also for neutral baryons, the conclusion is that
the effect observed by Kamal and Riazuddin should not
be associated with a possible need for a γ5-dependent field
renormalization. Thus, a proper way of understanding the
quark model result must lie elsewhere.

Let us begin by writing down the most general form of
(diagonal in flavour) vector and axial currents that couple
to photon:

Vµ = ψ[f1(q2)γµ + f2(q2)iσµνq
ν + f3(q2)qµ]ψ (2)

Aµ = ψ[g1(q2)γµγ5 + g2(q2)iσµνγ5q
ν + g3(q2)γ5qµ]ψ (3)

As in [8] the notation of [9] is used for Dirac matrices.
CP-invariance requires reality of functions f and g if stan-
dard form of Dirac equation is used. (In [8] formfactors f3
and g2 are considered imaginary which is required by the
condition of hermiticity. This difference is inessential be-
cause, when taken together, hermiticity and CP-invariance
require both of them to be zero.)

There are two types of γ5-dependent transformations
of Dirac spinors:
1) “phase” transformation

ψ′ = exp (iαγ5) ψ (4)

2) “scale” transformation

ψ′ = exp (βγ5) ψ (5)

with real α, β. The adjoint spinors transform like ψ′ =
ψ exp (iαγ5) and ψ′ = ψ exp (−βγ5) respectively. Spinors
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ψL and ψR transform under phase transformations with
opposite phases while under scale transformations their
relative size is changed.

Let us discuss how the form of currents Vµ, Aµ is af-
fected by phase and scale transformations. Using proper-
ties of γ matrices we find

exp (−iαγ5)[γµ, γµγ5] exp (−iαγ5)
= [γµ, γµγ5]

exp (−iαγ5)[σµν , σµνγ5, γ5] exp (−iαγ5)
= [σµν , σµνγ5, γ5](c− isγ5)

exp(βγ5)[σµν , σµνγ5, γ5] exp(−βγ5)
= [σµν , σµνγ5, γ5]

exp(βγ5)[γµ, γµγ5] exp(−βγ5)
= [γµ, γµγ5](ch − shγ5) (6)

where c = cos 2α, s = sin 2α, ch = cosh 2β, sh = sinh 2β.
Under phase transformations the standard form of cur-

rents (2, 3) transforms therefore to

V ′
µ=ψ′[f1γµ + (cf2 − isg2)iσµνq

ν

+(cf3 − isg3)qµ]ψ′ (7)

A′
µ=ψ′[g1γµγ5 + (cg2 − isf2)iσµνγ5q

ν

+(cg3 − isf3)γ5qµ]ψ′ (8)

From (7, 8) we see that: 1) functions f ′
1 (= f1), g′

1 (= g1)
are unaffected by phase transformations and 2) functions
f ′
2 (= cf2 − isg2), f ′

3, g
′
2, g

′
3 may in general be complex

even though CP is conserved. However, the form of the
Dirac equation has to be modified then to (compare [10])

(p/−m(c− isγ5))ψ′ = 0 (9)

Similarly, under scale transformations the standard
form (2, 3) of currents Vµ, Aµ transforms to

V ′
µ = ψ′[f ′

1γµ + f2iσµνq
ν + f3qµ]ψ′ (10)

A′
µ = ψ′[g′

1γµγ5 + g2iσµνγ5q
ν + g3γ5qµ]ψ′ (11)

where f ′
1 = chf1 −shg1, g′

1 = chg1 −shf1, and f2 = f ′
2 etc.

i.e. only the coefficients at the γµ, γµγ5 terms are modified.
Hereafter the prime sign (′) is used to label functions f ,
g when they correspond to a non-standard form of Dirac
equation.

We are now prepared to discuss the applicability of γ5-
dependent renormalization to neutral baryons. We follow
the argument of [8] closely. For simplicity consider just a
neutron. Near its mass-shell and in the absence of weak
interactions (but with complete account for strong and
electromagnetic interactions) the neutron propagator has
the form

S−1
o = p/−mo (12)

Let us now set the Cabibbo angle to zero. With weak
interactions turned on the propagator of (12) is modified
and close to its new mass-shell it has the general form (see
[8])

S′−1 = ap/+ bp/γ5 −m′ (13)

In writing (13) we have assumed that an appropriate phase
transformation has been already carried out to bring the
general mass term of the form given in (9) to the stan-
dard form. Such a transformation does not affect the ap/
and bp/γ5 terms (compare (6)). Since weak interactions
are small perturbations we have a ≈ 1, |b/a| � 1, and
m′ ≈ mo. Let us now bring the propagator of (13) to the
standard Dirac form. In order to achieve this we perform
a scale renormalization with appropriate parameter β:

S−1=exp(−βγ5)S′−1 exp(+βγ5)
=(a ch + b sh)p/+ (b ch + a sh)p/γ5 −m′ (14)

Thus, in order to bring neutron propagator to its standard
Dirac form we need tanh(2β) = −b/a, i.e. β of order b/a.

Renormalization of propagators as in (14) is associated
with a simultaneous renormalization of fields (ψ′ → ψ,
as in (5)) and of the form of currents (10, 11). Since we
require that, after renormalization, neutron couplings to
photon satisfy f1(0) = 0 (zero charge) and g1(0) = 0 (ana-
log of the assumption necessary for the proof of Hara’s
theorem) we obtain the conditions

f1(0) = f ′
1(0)ch + g′

1(0)sh = 0
g1(0) = g′

1(0)ch + f ′
1(0)sh = 0 (15)

Assume now that in perturbative calculations in some
model we have obtained a nonvanishing g′

1(0). For clar-
ity we should stress here that a nonvanishing g′

1(0) does
not violate electromagnetic gauge invariance and current
conservation in any way as long as it can be renormalized
away. It appears only because a non-standard representa-
tion for currents and Dirac spinors is used. In the stan-
dard representation we of course have g1(0) = 0 as the
second of (15) above requires. Whatever value of f ′

1(0) is
obtained it is clear that renormalization conditions of (15)
require f ′

1(0)/g′
1(0) = − tanh(2β) = −1/ tanh(2β). Thus,

in particular, β = ±∞ is required. This cannot be rec-
onciled with the perturbative renormalization condition
that β is to be of order |b/a| � 1. Thus, if a nonzero g′

1(0)
is somehow generated for neutral baryons, it cannot be
renormalized away by a γ5-dependent transformation.

Let us now show that in the quark model the pertur-
bative calculation of the contribution from W -exchange
between quarks in the neutron does indeed lead to a term
that at hadron level must be identified with g′

1(0) 6= 0. To
see this observe that neutron spin-flavour wave function
(quarks: ddu) is obtained from that of proton (quarks:
uud) by a simple replacement u ↔ d. Symmetry of the
wave function ensures that it is sufficient to consider W -
exchange in one ud diquark only. For the proton the photon-
proton parity-violating coupling can be expressed in terms
of photon-diquark couplings as

〈p ↑ γ|T |p ↓〉 =
1

3
√

2
t+1 − 1

3
√

2
t−1 − 1√

2
v (16)

where parity violating weak+electromagnetic diquark →
diquark + γ transition amplitudes are defined as

t+1 = 〈S+1(ud)γ|T |A(ud)〉
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t−1 = 〈A(ud)γ|T |S−1(ud)〉
v = 〈S0(ud)γ|T |S−1(ud)〉 + 〈S+1(ud)γ|T |S0(ud)〉 (17)

with diquark states

|A(ud)〉 = | 1√
2
(ud− du)

1√
2
(↑↓ − ↓↑)〉

|S+1(ud)〉 = | 1√
2
(ud+ du) ↑↑〉

|S0(ud)〉 = | 1√
2
(ud+ du)

1√
2
(↑↓ + ↓↑)〉

|S−1(ud)〉 = | 1√
2
(ud+ du) ↓↓〉 (18)

For the neutron we get similarly

〈n ↑ γ|T |n ↓〉 = − 1
3
√

2
t+1 +

1
3
√

2
t−1 − 1√

2
v (19)

Calculations in the quark model as in [4] give t+1 = −t−1
and v = 0 and, consequently, they yield equal (up to a
sign) nonzero values of g′

1(0) for proton and neutron. The
origin of the nonzero value of g′

1(0) (whatever it is) is
clearly the same for both proton and neutron.

The above argument may be dressed in a slightly more
elaborate form by following the lines of [8]. Namely, one
can consider a Cabibbo-suppressed charm-changing weak
radiative transition Σ0

c → nγ (cdd → udd + γ). For this
process an analog of Hara’s theorem is expected to hold: in
the limit of equal masses of the u and c quarks the parity
violating Σ0

c → nγ amplitude should vanish. The reason-
ing of [8] may then be applied. First, we imagine a world
in which u and c quarks are degenerate. By forming appro-
priate linear combinations of u and c quarks (u′,c′) one can
then eliminate the c′ → d transition in the Cabibbo ma-
trix and deal with weak W -exchange-induced u′d → du′
transition exclusively (and a vanishing c′d → dc′ transi-
tion). States n′ and Σ′o

c are then not transformed into
each other by a single W -exchange process. In this way
we diagonalize the problem and are led to consider pro-
cess u′dd → u′dd + γ i.e. an n′ → n′γ coupling. This
is essentially what we were discussing previously with an
unimportant change of names (n′ → n).

Inability of the γ5-dependent field renormalization to
explain the origin of quark-model violation of Hara’s the-

orem is clearly related to the composite nature of baryons
as prescribed by the quark model. Indeed, theW -exchange
contribution which lies at the origin of quark-model viola-
tion of Hara’s theorem “does not know” about the charge
of the spectator quark. Thus the total baryon charge may
be reduced to zero by assuming an appropriate charge on
the spectator quark. Discussion of this paper shows there-
fore that if the result of Kamal and Riazuddin is to be
understood at some composite level it should probably be
the diquark level.

In summary we have shown that: 1) quark model does
lead to a nonvanishing neutron-photon coupling that at
hadron level may correspond to g′

1(0) and 2) this contri-
bution cannot be renormalized away by a γ5-dependent
transformation.

Consequently, γ5-dependent renormalization does not
provide a proper way for a hadron-level understanding of
the violation of Hara’s theorem in the quark model.
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